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When A=r=O, conditions (4.91, (4.11) take the form 

D cos* e = 0, D sin e cos e = 0 (4.12) 

D-t 
c (A- + 2PJ 

6&K_ o*sin~9= 0 

D&- -&- IO+ - cy-$-) 
[ I 3+.sinle- 6 

System (4.12; has the following solutions: 

rj sine = 0, 8+ = - 66 /[ -&]I (= a_) 

2) eose=O, 8+=- 6~+6~~+~~ (=$u_) 

Thus we have for the first(second) solution the corresponding interphase planes perpen- 
dicular (parallel) to the z1 axis. 
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CONFIGURATIONAL FORCES IN THE MECHANICS OF A SOLID DEFORMABLE BODY* 

G.P. CHEREPANOV 

A configuraticaal force /l--3/,which always originates in a deformable 
solid whenever the stress source mcves, represents physically the 
contribution of the external strain and stress fields to the dissipation 
of enerz- _i t taken per unit path length of the source. When the stress source 
(sing,<larlty) is internal, the configurational force is the fundamental. 
paramerer controlling the process of motion and it can be called a driving 
force. Linear singclarities of the type of crack and dislocation contours, 
point singularities of the type cf small cavities and inclusions, etc. 
are examples of each cases. If the singularity is generated directly by 

external forces, the configurational force plays an auxiliary role and 
such cases wiil be exsmined below, This is the problem cf the motion of 

a smali solid body over the surface of a half-space, and different schemes 
of wedge motion in an unbounded elasto-plastic space. 

1, Motion of a small solid over the surface of a half-space. Let a concen- 
trated force (T, 0, -K) move at a ccnstant velocity V over the surface of a solid half-space 
z (0 fFig.l?, stretched by a stress u,~. Its surface is considered to be free of external 
loads, with the exception of the point 0 moving with the velocity V of the origin. Since the 

field of quasistatic stresses and strains in a solid is stationary in the OzF2 coordinate 

system, the following equality /l-3/ holds for any materials for any finite deformations: 
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(1.1) 

iiere r is the configurational flux of solid body energy dissipation into the origin, z 
is an arbitrary surface in the lower half-space including the origin (the contour of the edge 
X lies on the boundary s = O),aij ma Utare stress ma displacement components, respectively, 

n1 are components of the direction of the external normal to the surface z (n, = n,, Ui,r = 

ui, I)? and U is the strain energy per unit volume. 
Evaluating I' over the surface of a parallelepiped Iq I< R(L = i,2), O<zl< 6 as 6+ m, 

R-c 00, 6/R-+0, we obtain the Configurational force /l-3/ 

r=Tu:, 

(the quantity &TX is a function of uzS and the time 
of state). 

Indeed, as @R-O the contribution to r from the 
infinitesimal, while we have a, = "v = O,", - -i (Fig.1) 
according to (1.1) we will have (below the integration 
ma +R) ,.n 

(1.2) 

t determined by the rheological equation 

small sides of the rectangle will be 
on the large side. Consequently, 
is carried out between the limits --R 

By the rule of r-integration /Z, 31, we have 

The superscripts s and M refer to the intrinsic field of singularities and to the 
unperturbed field, respectively. 

Because of the boundary conditions 

We hence obtain (1.2). 
The total energy dissipation D per unit concentrated force path length is 

D = T $ Tu:,.= T(1 -i_ u;.) (1.3) 

Let the action of the force on the half-spacebetransmittedthrough some smallrigidbodyB; 
then the force T will equa ? the resistance experienced by the body B. (At the same time, 
the quantity T equals the work performed by the body R along unit path. We emphasize that 
relationship (1.3) is not the energy-conservation equation;. 

For small N and uEI = 0 the quantity D = l,! + pi.+', where k and p. are the cohesion and 
friction coefficients, respectively (Coulomb's law). Hence, in confcrmity with (1.3) we obtain 

T = (k -+ pl_\') (1 -L U ",) (1.4) 

This is a generalized Coulomb law that takes account of the influence of the deformation 
of the half-space by secondary forces tha t can be substantial for materials capable of ex- 
periencing significant deformation prior to rupture (low-modulus polymers and composities, 
certain polymers and metals at elevated temperatures). Formally, if the old Coulomb formula 
is used, the effect of the configurational force results in a decrease in k and pr as the 
half-space is stretched (and an increase in k and p, for compression!. 

Upon indentation of the body B in a half-space with substantial plastic deformation 
("ploughing"), it is natural tc make the following assumption: the energy dissipation D is 
directly prcportional to the degree of identation h, i.e., W = ?.h. where i, is a certain 
constant of thesystem that is dependent on the velocity V and on the shape of the indentor. 
The magnitude of the indentation h as a function of the normal force N is determined ex- 
perimentally for any given indentor. Consequently, the fundamental relation for ploughing 
can be written thus T = Ah(K). For small N and constant area of contact, the function h (_V) 
is linear. This limit case corresponds to the classical Coulomb law. 

As an example of ploughing we consider the plane problem of cutting chips of thickness 
h from an ideal elasto-plastic half-space; the body B is a rigid cutter in the shape of an 
angle o (Fig.2). We approximate the free surface of the chip near the contact area by a 
circle of radius r. and we consider the whole chip in the neighbourhood of this area to be in 
the plastic state. The stress field in the plastic domain (and on the contact area) will be 
the following /4/: 

J, = -2Ql*, ag=-zOr*ln$-2~'5, s*=o (1.5) 

@S is the shear yield point r,9 are a polar coordinate system with centre 0 for the 
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Fig.1 Fig.2 

approximating circle). We shall consider approximately that the tangential stresses are zero 
on the contact area while the normal pressure is the stress (TV in the plastic domain for r= 
r,+ h. We hence obtain 

T = Zar, sin a In (1 + h/r,) (1.Q 

The length a of the contact area and the chip radius r, are directly proportional to h, 
where the proportionality factors can only depend on a, s,iE and v, where a is the cutting angle, 
E and v are Young's modulus and Poisson's ratio (on the basis of a dimensional analysis). Since 
D= T for u,", =0, then the example presented confirms and clarifies the assumption that 
D - h. 

Therefore, the following relation is found: the resistive force acting on the cutter b\ 
the material is directly proportional to the depth of the cut (the chip thickness), the shear 
strength of the material and the sine of the slope of the cutter plane. This relation can be 
utilized for the optimal design of teeth on a drill bit (for instance, to select the optimal 
magnitude and slope cf the teeth in the most promising tooth construction "stratapax"!. 

2. Cutting an elasto-plastic body. Let a semi-infinite rigid rectangular tool to 
thickness 2h move at constant velocity v in an infinite space of ideal elasto-plastic material 
(plane deformation, Fig.3). At infinity the space is considered to be subjected to the action 
of the stresses oXa and av"(oUu (0,~~~~ = 0). For simplicity, the sides of the tool will be 
considered tc be smooth, i.e., the tangential friction stress on the side surface is zerc. 

F1g.3 

Tie follcwin5 hcl5: 

(The velocity of motion is small compared with the speed of 
socnd~. 

For the stationary stress and strain fields under considera- 
tion, the following equality holds /l/: 

JVL- o,,n,u,,.)dT=@ (i,)=l,Z). (2.1) 

Here x is a closed contour consisting of the cutter surface 
contcur Ic and an arbitrary arc r, endircling the tool; the 
moving rectangular Cartesian coordinate system zy is cotipledto 
the tool (the z axis is the axis of symmetry of the probler;. 
WE recall that (2.11, exactiy as (1.11, is valid for any 
rheclogical model of the body. 

1 (I’,,, - o.jv,u;. .) d‘ = D - T 
rc 

(2.2) 

(2.3) 

;here T is the external force applied to the cutter in the direction of the I axis, D is the 
total dissipaticn of energy per unit path length of the cutter, and r is the configurational 
force (the contribution of the external fieldtothe dissipation D). 

On the side faces of the cutter n, = O,I+,~ = 0,~~ = 0, consequently only the frontal surface 

of the cutter can be considered as P,. In this case of an elasto-plastic body, the quantity 
u on the frontal surface equals the energy dissipated per unit volume (the dissipative function) 

since the elastic compcnent is negligibly small because of the finiteness of the deformation. 

Consequently, the first component on the left side of (2.2) yields D. Furthermore, because 

of the equality of the normal veiocity components, on the frontal surface we have 1' = au, (liO - 

I'i),iri = -lI'd~,,dz (where zXO = z - 1.! is the coordinate associated with fixed space at infinity!, 

i.e., uli,1= -1. Moreover, the quantity 'rvuu,x will be an odd function of y on the frontal 

surface. Hence (2.2) results. It can also be proved that (2.2) is valid when taking account 
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of arbitrary friction on the side faces of the cutter and when taking account of the elastic 
component U on the side parts. 

We take the contour of the rectangle ItI<R,jy(<6 as R-oc,~-.cG.&/R-O as S_. Then 
the contribution of the integral over the small sides of the rectangle will be negligible, and 
will be n,= O,ny= 1 on the sides u=ca, and by using the rule of T-integration /2, 3/, we 
will have (the integration is performed below within the limits --Rto +R) 

r = 2 s (sij%juq,, +"ijd"jU;I) l*&=2(3;Su;,.dz+ U$Jij."jd*) 

The unperturbed (i.e., no wedge) and perturbed stress and strain components are denoted, 
respectively, by the superscripts 00 and s. (This decomposition evidently does not contain 
any assumptions; it simply defines the perturbed component as the difference between the total 
and unperturbed quantities.) Furthermore, we use the equilibrium conditions and the presence 
of a displacement jump 4~,,=2h in the body during traversal of any contour Ia. We have 

lim s“;,.d~=--lr, R_ms lim 
A-CC 

sij%, do = - Tar, 

Relationship (2.39 is proved. 
On the basis of (2-l)-(2.3) we obtain 

D = T $ Tu,q, -f- 2huua (2.4) 

This relationship could also have been obtained by the method indicated in Sect.1, by 
using the value of the r-residue for the dislocations and the concentrated force /l--3/. 

We hence find the following expression for the magnitude of the cutter resistance force: 

T = (D - 2ho,=) ,’ (1 J_ u,” .) 

In the case when uU"> 0 the tension at infinity results in separation of the material 
from the side faces at a certain distance from the cutter frontal section: the assignment of 

OY 
si becomes incorrect. We assume that for sufficiently large r the material is linearly 

elastic with Young's modulus E and Poisson's ratio v (II is the shear modulus). In this case, 
the stress intensity factor of the external field h'r.equal to litn (oy I'm as r- 00, should 
be given at infinity (r is the distance from the frontal part of the wedge). The following 
expression for the resistance fcrce is obtained in the same way: 

since the magnitude o f *he configurationai force will equal 

I- = - TM:, I - (1 - 9) E-‘KilL 

in this case instead of (2.3;. 

(2.5: 

When there is no external field (when the configurational fcrce eq.uals zero! D = T. This 
relationship enables D to be determined (by test or frcrr mcdel thecr); as a function cf h and 
the physical properties of the material. 

Depending on the relative role of elasticity and plasticity, as well as on the sign of 
the stress cyr the following six f.undamental versions of the flew cf an elasto-plastic material 
around a cutter (Fig.41 can be extracted fcr large r. 

Fig.4 
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Version lo. For Kr,> pf/s and uVW Q 0, where K lE is the fracture toughness, the 
role of the elasticity foxes near the cutter end is negligibly small. In the case of an 
incompressible, ideal, elasto-plastic Tresca-Saint Venant rm&erial, the family of Characteristics 
in the plastic domain near the end of the cutter can be taken es for a plastic wedge with 
aperture angle 3n 2. In this case, according to the theory of plasticity, we have on the 
frontal section /4/ 

0; = -27, (1 + n) - q, uy = --Im, - q, TX” = 0 (2.6) 

41s is the shear yield point, q is the magnitude of the side support for y = -& near the 
cutter angles determined from solutions of the elasto-plastic problem in the large). 

trerslon z". For K,,> pj'z and fir>@ a symmetric cavity appears on the frontal face 
in addition to the cavities on the side faces ofthe cutter. The presence of this cavity is 
due to the finiteness of the plastic deformations in the tip zone and the fact that for h'r> 0 
any fracture in the plastic body would have parabolically rounded-off ends /l/ (the inflow, 
i.e., the stretching contact pressure between the cutter and the material is eliminated). in 

this case, the stresses on the frontal area of contact will be a. = -2~,, oy= 7," = 0 for a 
well-developed frontal cavity so that the resistance force is T = 4&r,, where 6 is the width 
of the area (determined from the solution of the elasto-plastic problem in the large). 

Version 3 
0 

. Fcr lip, N TV 1'1;. oya < 0 theinfluence of elastic cleavage is substantial SC 
that an elastic dead zone fllled by the very same material moving at the speed of the cutter 
is formed in front of the frontal face of the cutter (shown by dots in Fig.4). The solution 
of this problem can be found in a "quasibrittle" approximation, i.e., by considering the 
plastic domain surrounding the dea d zone to be a sufficiently thin layer along its boundar;. 

Version 4O. For fin .+ li 1% and KI> 0, symmetry cavities appear in addition to the 
dead zone in the preceding version, along the side faces of the cutter. In this case the 
quasibrittle approximation also enables an analogous effective investigaticn to be made. 

Versions 5' and 6O. FG~ KrC< plr?; the influence of plasticity is small compared with 
the elastic cleavage: a gaping q-uasibrittle normal rupture crack is formed in front of the 
cutter, and cavities still appear along the sides of the wedge for A'1 > 0. (These cases are 
the limits fer Versions 3o and 4O, respectively ). 

Because of the greatest practical significance of Versions 3O and 4', a solution of the 
corresponding problems is given below. 

One of the most important resuits of the general qualitative analysis presenteci for the 
fracture process during cutting is the Cied.:ction aboct t.ne substantial influence of the ore- 
stress of the item or speciner. being treeted: prelixintry tension facilitates cutting c-n- 
siderably while comnressios m&es it diffiznlt. This result is a consequence of the influence 
of the configurations1 force - it is most substantial for internal cutting; however, it cari 
also be significant for surface catting if an external force is applied to the chip being 
stripped off Cior instance, by using a fluid or gas jet!. The effect ob tained can be used 

in designing tha oFtima1 struct;ire cf a c-tting instrument. 

3. The problem of cleavage with a dead zone under compression. Let a smoth 
absolutely rigid semi-infinite thin wedge be along the negative half-axis I. and for y = 0. 

0 <J< I a_head of it let there be a fine cavity, a dead zone filled with fragments of 

frac=ureZ material 'the plane Frobiiem, Fin.5‘. At infinity the space is compressed by the 
stress oI,= --q(q) il), The aczx cf the &ad zone on the edge of the cavity w:ll be simtilated 
by a constant press-ire p> Ii a?E a tangentla: frictlcn load T)CI. Because of the symzmetr: 

of the ~robla:. WE tan lizit clzrselves izc the upper half-plane y >(?. 
we hsncc; ob:i:r. the fcllc~ing bour.da_?' value problem cf the plana thecry cf eli?stizity 

for t‘ne haLf-plane y > (.I, 

tJ = Cl. ZI < (1. 1‘ = h. TX'X!, _ (I (3.1) 

y = 0. 0 ( 3 < i. fJ# = --p. T,. = T 

y = 0. * > 1. G = 0, TXy _= 0 

9 7 y?+ 03. uy = --'i. 0, = Tfy = Cl 

we use ;he Kclcso~-Mcsktel~shvili representation of plane elasticity theory 

o,.+o,=2{as(z)-cr,(2)] (-'=r-+iS/) 
cry-- O,T 2iTX:y= 2[5@'(z) + Y(2)] 

2p(u L iL.)=lX~~(z)-~~)-~) 
I'=@. F'(z)=Y(r) 

{3.2) 

Here Cb(z) and Y(z) are anaiytic fu,,cticr.s of the complex variable z in the upper half- 
plane, and U, u are displacements. 

ITI this probler there are two singularities in addition to z = m: z = 0 and 2 = 1. 
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Fig.5 Fig.6 

The point z 4 1 is the tip of the separation crack: the function (D (z) is of order (z - I)-'!* 
there. In the neighbourhood of the other point the elastic body is tangent to the frontal 
face of the cutter near the angular point when the dead zone is filled insufficiently with 
fragmentary material, which results in infinite stresses near this point (of order r-**), to 
rough working of the body and further filling of the dead zone with fracture products. The 
rough working process ceases when the pressure of the fragments in the dead zone becomes 
sufficiently high in order to separate the cavity walls near the angles and to reduce the 
stress concentration to a minimum near z = 0. We consider the latter, stationary, stage of 
the rough-working process by requiring that the desired function Q(z) should not have a 
power-law singularity at the point i = 0. 

By using the representation 13.2) and the theory of singular integral equations, the 
solution of the boundary value problem (3.1) in the above class of functions can be reduced 
to the following form: 

@(') 
1 =+4-TP--.+h(i-_tj + +c,-,,1/yg (3.3) 

z@‘(:)~ Y.(z)=---+-~~+1n(i -$j 

(jr3'(----+-t as z--+x) 

Ey using (3.2: and (3.3) we find the shape of the cavity ahead of the cutter (for Y= 
iO,O<x<1) 

For x=0 +lhe displacement L‘ should be equal h 

(3.4) 

(j.5) 

Since 5 = p!t‘. where p, is the ccefficlent cf friction, we okttiin tie pressure p in the 
staticnary dead ZGI-IE frcr; i3.5;: 

(3.6: 

Acccrdicg tc (3.5! and !?.5: 

'This corresponds to a wedige dislocation of power 2h and force 27) at inflnlty. 
The stress o, ir. the dead zcne is determined fro- the equi1ibri.z equaticc 

d (ro,i dr = -pcic ax + T 

Since we will ha;,e o, = (1 fcr J = 1. we hence obtain B== -p 7 T(I - I) r(r). There- 
fore, the pressure on the frontal face cf the wedge is 

-o*=p - 11 h = p (1 -+ tIrt ii) (3.7) 

Consequently, the frontal resistance force T to the wedge mction, in confomity with 
(3.61 a!?~! (3.7), will equal 

(3.8) 

By using !3.2) and (3.3; we fir .d the stress intensity factor -lir = j'm(p -q) and the 
length of the cavity in front cf the 
(3.61 

cutter from the brittle fracture criterion and equations 

I= 
4.3~ 

Ii (b + I/bz)Z (3.9) 
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that 
In particular, for g = 0, v = ‘:*, x = 1 we will have 
for &<3pJr% the required condition 

1 = 32n-‘pZhZ~ and it is evident 
l>h is satisfied fairly well. 

4. The problem of cleavage with a dead zone under tension. In the case of 
tension of the space across the wedge, the material breaks away from the side faces of the 
wedge, and symmetric empty cavities (Fig.6) form along y = 0 for t< -a. In this case, 
the stress intensity factor at infinity should be given as KI = Kl”> 0. This problem belongs 
to the class N in which the Saint Venant principle is not satisfied /l/. 

The following boundary value problem holds for the half-plane y> 0 with the other 
assumptions as before: 

y = 0, 2(-a, 0” = T.&” = 0 (4.1) 

y = 0, -a < x < 0, v = h, rxy = 0 

y = 0, 0 < 2 < 1, U” = -p, T-_” = 1 

y = 0, z > 1, u = 0, TX” = 0 

y = 0, X-F co, ux = au = K,“.‘Jf2ns, ‘Iv = 0 

From physical considerations in the conditions of the stationary stage of the process, it 
follows that the function D(z) will behave as follows at the singular points of this boundary 
value problem: 

z-+-a, z-so, a,(z)=O(i); (4.2) 

z-*1, a,(z)= K,/[2 J/2n(i--)] 

Here K, is the stress intensity factor at the end of the dead zone (a crack with a filler). 
By using (3.2) the solution of the boundary value problem (4.1) in the class of functions 

(4.2) can be reduced tcthe following form 

(4.3) 

(L: y =0,--a, <I< -a plus y = O,O<r<Z) 
X (z) - / 1’; / as z + 00 _t io 

Here X*(z) denctes the val.Je of X (z)cn the upper edge of the slit. 
Two conditions that give the behaviour of 0 (z) as z.+ 00 and z- I, equation (3.711, the 

equation r = #'I 3 and the condition 

(4.41 

detemine the u~\nswn parameters of the Problem, a,l, p.~, T. 
By analysing formulas (3.4), (3.6: and !3.9), we see that for real val.Jes of pI the 

quantities p,I and C(I) depend fairly weakly on r (the exception is the frontal resistance 

force T). Consequently, for simPlicity we neglect T when calculating a,l,p by assuminq 
r = 0. According to (3.&I, the quantity T as before equals 

T = ?ph (1 + p,l,‘h) 14.5) 

where we find p and I apprcxinately. 

By using i3.6) and (3.4' for T = 0, we find 

Moreover, according to (4.4; we have for r=o 

By using (4.6) and (4.7), conditions (4.2), (4.3) and (4.5) assist in obtaining the 

following equations to find a, 1, and p (all the radicals are positive) : 
, 

S[ I-z 

-1 ~(~-+-O) 
I’* dx = $)‘F K1” 

0 

(4.6) 

(4.73 

(4.8) 
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I 

s $2 n 

o [t(z+o)(I -z+)p - v- KIc 
-r p [I (I f a)]“1 

1 

S[ 
0 0 

(4.10) 

5. Cleavage with a yawning separation crack. When the fracture products are 

removed from the crack cavity (or at the beginning of cleavage), the influence of the filler 
can be neglected. In this case, p = 7 = 0 should be assumed in formulating the boundary value 
problems (3.1) for compression, and (4.1) for tension, and the solution of the boundary value 

problems should be sought in the class of functions having an integrable singularity as t-+0. 
We limit ourselves to the case of compression. The solution of the boundary value problem 

will be 

++*, zW(z)+Y(z)=-+* (5.1) 

(1/z(z- I)+z as z+ OD, and C is a real constant). 
On the basis of (3.2) and (5.1), we find the shape of the crack cavity for I/=+0,0< 

t<l 

Since L: = h for I = 0,we obtain 

According to (3.2) and (5.1) we have 

ii, = 1 “n,.i(C_qql), C-ql=h-,,111!(2~) 

We find from (5.3) and (5.4) 

l=$[(l T (~1”$J’-i]* 

C= 4@1 
--G-41 (q>(J) 
n(X-rl) 

'(5.3) 

(5.4) 

(5.5) 

In particular, for q = 0 

[ = y”’ ) c= - 4@1 
nhj, (I + v.)? ., (X 7 1) 

The singularities z = 0, z =l, and .: = oz are unique sources (for z = cc) and sinks (for 
z=o and z = I) of elastic energy since the wedge i s ideally smooth and the body is ideally 
elastic. 

We examine the invariant r-integral (2.1) over the contour displayed in Fig.7. By 
using 15.1) and (3.2) we can find 

T=(l - v?) E-'K,,2 + 2qh (9 > 0) (5.6) 

Here T is the sum of r-residues for traversal around the 
angles of the wedge (for z =O). The first term is the r- 
residue for by passing the point z=l and the second is the 
r-residue for bypassing the infinitely remote point. 

On the basis of (5.6), a resistance force T acts on the 
wedge as it moves. This is a simple and instructive example 
of a configurational force! Let us note /5-lo/in which 
different, more complex problems of cleavage were examined in 
the classical formulation of the present section. 

During cleavage of a body by a smooth rigid wedge with 

Fig.7 
a dead zone under compression conditions (Fig.5), the potentials 
0(z) and Y (z) as well as the stresses inthe non-stationary 

rough-working process will have a power-law singularity at the wedge angles (for I = 0). In 
this case, in addition to the frontal resistance force from the fragements, a configurational 
resistance force component will also act on the wedge. By using the invariant 
it can be shown that this component equals 

r-integral 
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T = (1 - v')E-'K,,* + 2h (q - p) + 2zAu (5.7) 
(Au = a (O,O) - a (I, 0)) 

During cleavage of a body by a smooth rigid wedge with a dead zone under tension conditions 
(see Fig.6 and Sect.4), the configurational resistance force component has the form 

T = Tc - (1 - v?) E-'(KI=)? - 2hp + 2rAu (5.8) 
(r, = (1 - v~)E-'K~,~, Au = u. (0, 0) - u (1, 0)) 

In both cases the force T vanishes in the stationary stage. 
As follows from published research, when calculating the resistance force in contact 

problems concerning wedge or stamp motion /ll-15/, the configurational component of this 
force, generated when bypassing the singularities on the contact area, must be taken into 
account. In particular, when slicing an elastic body with a very thin blade, whose ends 
penetrate into the very tip of the forward-proceeding crack, the force of the resistance to 
its motion will equal the critical force pc diminished by the configurational force from the 
external tension field 

An analogous consequence holds with respect to the cutting work; the work of the external 
forces expended in the cutter motion diminishes by the magnitude of the work of the configura- 
tional force for K,> 0. 
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