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when'p = t=0, conditions (4.9), (4.1l) take the form
Deos?8 =0, DsinBcosf=20 14,123

A+ 2
D+%—)~c+sinse= 0

1 AT+ ¢ (A - .
DE_—G—[TX—]-O* ——"—‘3—}1_-2—-7"&‘-)'6*5111’6—-6

System (4.12) has the following solutions:

1) sinB =0, a,:——ﬁé/[T}}?—]: BTN

2) cos 6 =10, 5*=-5l-\+*"(;2;: %:')'l (2%5')

Thus we have for the first(second) solution the corresponding interphase planes perpen-
dicular (parallel) to the 2 axis.
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CONFIGURATIONAL FORCES IN THE MECHANICS OF A SOLID DEFORMABLE BODY

G.P. CHEREPANOV

a configuraticnal force /1—3/, which always originates in a deformable
solid whenever the stress source moves, represents physically the
contribution of the external strain and stress fields tc the dissipation

of enercy, taken per unit path length of the source. When the stress source
(singularity) is internal, the configurational force is the fundamental,
parameter contrclling the process of motion and it can be called a driving
force. Linear singularities of the type of crack and dislocation contours,
point singularities of the type of small cavities and inclusions, etc.

are examples of each cases. If the singularity is generated directly by
external forces, the configurational force plays an auxiliary role and

such cases will be examined below. This is the problem of the motion of

a small solid body over the surface of a half-space, and different schemes
of wedge motion in an unbounded elasto-plastic space.

1. Motion of a small solid over the surface of a half-space. Let a concen-
trated force (T, 0, —N) move at a constant velocity V over the surface of a solid half-space
<0 (Fig.l), stretched by a stress 0,*. Its surface is considered to be free of external
loads, with the exception of the point O moving with the velocity V of the origin. Since the
field of quasistatic stresses and strains in a solid is stationary in the Ozyz coordinate
system, the following equality /1-3/ holds for any materials for any finite deformations:

#prikl.Matem,Mekhan.,49,4,593-603,1985
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I={Un—oinudE (.j=123) (1.9)
z

Here I' is the configurational flux of solid body energy dissipation into the origin, Z
is an arbitrary surface in the lower half-space including the origin (the contour of the edge
¥ lies on the boundary z=0), 0;; and u, are stress and displacement components, respectively,
n; are components of the direction of the external normal to the surface T n, = ng, U=
u;,), and U is the strain energy per unit volume. »

Evaluating T over the surface of a parallelepiped |z;|€ R(i=1,2), 0<z3<b as 6+ o,
R— o, 8/R — 0, we obtain the configurational force /1-3/

IT="Tus« (1.2}

(the quantity u, is a function of 0, and the time t determined by the rheological equation
of state).

Indeed, as §/R— 0 the contribution to T from the small sides of the rectangle will be
infinitesimal, while we have n,=n = 0,n, = —1 (Fig.l) on the large side. Consequently,
according to (1.1) we will have (below the integration is carried out between the limits —R
and +R)

I'= (Sags, & F Spaty, 5+ Opsz, o) =g 20y

ki
adi e §§
By the rule of r—integration /2, 3/, we have

= L

" Reses,

?R—-’o SS (3:?”:: + 5;”;.: + 5;:":: + 5;”;, x + 3,:“:: + S:u:. x) [z-:“é dr liy
The superscripts s and o refer to the intrinsic field of singularities and to the
unperturbed field, respectively.

Because of the boundary conditions
memip =0, sf =R =35=0, (Ss;:azdysi"
We hence cbtain (1.2).
The total enexgy dissipation D per unit concentrated force path length is

D=T+Tug,=T(1+ul,) (1.3)

Let the action of the force on the half-space be transmitted through some small rigidbody B;
then the force T will equal the resistance experienced by the body B. (At the same time,
the guantity T equals the work performed by the body B along unit path. We emphasize that
relationship (1.3) is not the energy-conservation equation;.

For small N and u% .= 0 the quantity D = %k + y,N, where k and p, are the cohesion and
friction coefficients, respectively (Coulomb's law). Hence, in conformity with (1.3) we obtain

T=(h+puA) (1 +u™) (1.4)

This is a generalized Coulomb law that takes account of the influence of the deformation
of the half-space by secondary forces that can be substantial for materials capable of ex-
periencing significant deformation prior to rupture (low-modulus polymers and composities,
certain polymers and metals at elevated temperatures)., Formally, if the old Coulomb formula
is used, the effect of the configurational force results in a decrease in k¥ and s as the
half-space is stretched (and an increase in k and y, for compression).

Upon indentation of the body B in a half-space with substantial plastic deformation
("ploughing"), it is natural tc make the fcllowing assumption: the energy dissipation D is
directly proportional to the degree of identation h, i.e., D = Jh, where % is a certain
constant of thesystem that is dependent on the velocity V and on the shape of the indentor.
The magnitude of the indentation h as a function of the normal force N is determined ex~
perimentally for any given indentor. Conseguently, the fundamental relation for ploughing
can be written thus T = M (N). For small N and constant area of contact, the function h (N)
is linear. This limit case corresponds to the classical Coulomb law.

As an example of ploughing we consider the plane problem of cutting chips of thickness
h from an ideal elastc-plastic half-space; the body B is a rigid cutter in the shape of an
angle a {Fig.2). We approximate the free surface of the chip near the contact area by a
circle of radius r, and we consider the whole chip in the neighbourhood of this area to be in
the plastic state. The stress field in the plastic domain (and on the contact area) will be
the following /4/:

,
3, =—2vln, ce=-—2‘t‘ln—::;-—2'zg Tg=0 (1.5}

(15 is the shear yield point r 8 are a polar coordinate system with centre O for the
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approxXimating circle). We shall consider approximately that the tangential stresses are zero
on the contact area while the normal pressure is the stress o, in the plastic domain for r=

ro-+ k. We hence obtain
T = 2at, 8in a In (1 4+ A/ry) (1.6

The length a of the contact area and the chip radius r, are directly proportional to h,
where the proportionality factors can only depend on «,tw/E and v, where a is the cutting angle,
E and v are Young's modulus and Poisson's ratio (on the basis of a dimensional analysis). Since

=7 for uy,=0, then the example presented confirms and clarifies the assumption that
D~ h.

Therefore, the following relation is found: the resistive force acting on the cutter by
the material is directly proportional to the depth of the cut (the chip thickness), the shear
strength of the material and the sine of the slope of the cutter plane. This relation can be
utilized for the optimal design of teeth on a drill bit (for instance, to select the optimal
magnitude and slope cf the teeth in the most promising tooth construction "stratapax"!.

2, Cutting an elasto-plastic body. 1et a semi-infinite rigid rectangular tool to
thickness 2k move at constant velocity V in an infinite space of ideal elasto-plastic material
(plane deformation, Fig.3). At infinity the space is considered to be subjected to the action
of the stresses o,* and 0, (0, < 0,1, = 0). For simplicity, the sides of the tool will be
considered tc be smooth, i.e., the tangential friction stress on the side surface is zero.

(The velocity of motion is small compared with the speed of
sound ) .

For the stationary stress and strain fields under considera-

tion, the following eguality holds /1/:

((L'n,——aijnjul,,)d2=0 (l,]=1,2) . (21)

<

Here I is a clesed contour consisting of the cutter surface
contocur Y, ané an arbitrary arc Z. endircling the tocl; the
moving rectangular Cartesian coordinate system zy is coupled to
the tool (the z axis is the axis of symmetry of the problemi.

We recall that (2.1), exactly as (1.1), is valid for any
rheclogical model cf the body.

Fig.?2

The follcwing hcla:

Cni—ou)ds=D—T (2.2)

I = \ (Ung— o, 15u; x)dS =— Tug , — 2ha,> (2.3

s
-x

where T is the external force applied to the cutter in the direction of the r axis, D is the
total dissipaticn of energy per unit path length of the cutter, and T is the configurational
force (the contribution of the external field to the dissipation D).

On the side faces of the cutter nm, = 0, uy, x = 0, Ty = 0, consequently only the frontal surface
of the cutter can be considered as I.. In this case of an elasto-plastic body, the quantity
U on the frontal surface equals the energy dissipated per unit volume (the dissipative function)
since the elastic compcnent is negligibly small because of the finiteness of the deformation.
Consequently, the first component on the left side of (2.2) yields D. Furthermore, because
of the equality of the normal velocity components, on the frontal surface we have V= duy (14—
V1)61 = —Vougdz  (where z,=z— 1t 1is the coordinate associated with fixed space at infinity),
i.e., uy x=—1. Moreover, the gquantity gy, . will be an odd function of y on the frontal
surface. Hence (2.2) results. It can alsc be proved that (2.2} is valid when taking account
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of arbitrary friction on the side faces of the cutter and when taking account of the elastic
component U on the side parts.

We take the contour of the rectangle |z|<R,Jyi<é as R— o, 8§~ x. /R—0as Z_,. Then
the contribution of the integral over the small sides of the rectangle will be negligible, and
will be ny=0,n,=1 on the sides y=+§, and by using the rule of TI-integration /2, 3/, we
will have (the integration is performed below within the limits —R to +R)

T=2 S (sij”"j"f,x + c'.j‘nju::) ly=s 9% = 2(3:5‘14;“: dz 4+ uf, S 3,.]-‘71], d.r)

The unperturbed (i.e., no wedge) and perturbed stress and strain components are denoted,
respectively, by the superscripts o and s. (This decomposition evidently does not contain
any assumptions; it simply defines the perturbed component as the difference between the total
and unperturbed guantities.) Furthermore, we use the equilibrium conditions and the presence
of a displacement jump Auxy = 2k in the body during traversal of any contour XI_,. We have

gijigu;‘xdz= —h, ’gixis::'.j'nj dr=—T8,,
Relationship (2.3) is proved.
On the basis of (2.1)—={(2.3) we obtain

D =T+ Tuf, + 2ho,~ (2.4)

This relationship could also have been obtained by the method indicated in Sect.l, by
using the value of the T-residue for the dislocations and the concentrated force /1—-3/.
we hence find the following expression for the magnitude of the cutter resistance force:

T = (D —2ho=)/ (1 +uss)
In the case when 0, > 0 the tension at infinity results in separation of the material

from the side faces at a certain distance from the cutter frontal section; the assignment of
0, becomes incorrect. We assume that for sufficiently large r the material is linearly

elastic with Young's modulus E and Pcisson's ratico + (u is the shear modulus). In this case,
the stress intensity factcr of the external field Kj,equal to lim (o, ) 277) as r— oo, should
be given at infinity (r is the distance from the frontal part of the wedge). The following

expression for the resistance feorce is obtained in the same way:

ED— (1=~ K2

E(lﬁ—u:’x)

T = (K]>O, K11=K1“=0)

since the magnitude cf the configuraticnal force will ecual
T=—Tui s — (1 —v})EIK}? (2.5}

in this case instead of (2.3).

When there is no external field (when the configurational fcrce eguals zero) D = T. This
relationship enables D to be determined (by test or from mcdel thecry) as & function cf h and
the physical properties of the material.

Depending on the relative role of elasticity and plasticity, as well as cn the sign of
the stress 0,, the following six fundamental versions of the flcw cf an elasto-plastic material
around & cutter (Fig.4) can be extracted for large r.

R0

N

t\””
:

Fig.4
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Vezrsion 1°. For K> uVh and ¢, < 0, where K. is the fracture toughness, the
role of the elasticity forces near the cutter end is negligibly small, In the case of an
incompressible, ideal, elasto-plastic Tresca-Saint Venant material, the family of characteristics
in the plastic domain near the end of the cutter can be taken as for a plastic wedge with
aperture angle 3n.2. 1In this case, according to the theory of plasticity, we have on the
frontal section /4/
= =21, (1 +1n) — g, oy= =27, —q, Ty =0 (2.6)

{1, 1is the shear yield point, g is the magnitude of the side support for y = +k near the
cutter angles determined from solutiocns of the elasto-plastic problem in the large).

version 2°. For Ki..> pVFE and K;>0 a symmetric cavity appears on the frontal face
in addition to the cavities on the side faces of the cutter. The presence of this cavity is
due to the finiteness of the plastic deformations in the tip zone and the fact that for A; >0
any fracture in the plastic body would have parabolically rounded-off ends /1/ (the inflow,
i.e., the stretching contact pressure between the cutter and the material is eliminated). 1In
this case, the stresses on the frontal area of contact will be o, = —21, 0, = 1,, = 0 for a
well-developed frontal cavity so that the resistance force is T = 4b1,, where 8 is the width
cf the area (determined from the solution of the elasto-plastic problem in the large).

version 3°. For Ki ~ p 1'% o, < 0 the influence of elastic cleavage is substantial so
that an elastic dead zone filled by the very same material moving at the speed of the cutter
ie formed in front of the frontal face of the cutter (shown by dots in Fig.4). The solution
of this prcblem can be found in a "gquasibrittle" approximation, i.e., by considering the
plastic domain surrounding the dead zone to be a sufficiently thin layer along its boundary.

. o > T - . -
Version 4. For Ki.~ ulh and K;>0, symmetry cavities appear in addition to the

dead zone in the preceding version, along the side faces of the cutter. In this case the

quasibrittle approximation also enables an analogous effective investigaticn to be made.

Versions 5° and 6°, For A L p]’ﬁ the influence of plasticity is small compared with
the elastic cleavage: a gaping quasibrittle normal rupture crack is formed in front of the
cutter, and cavities still appear along the sides of the wedge for K; > 0. {(These cases are
the limits for Versions 3¢ and 49, respectively }-

Because of the greatest practical significance of Versions 3° and 4%, a solution of the
corresponding problems is given below.

One of the most important results of the general qualitative analysis presented for the
fracture process during cutting is the deduction abcut the substantial influence of the pre-
stress of the item or specimen being trested: preliminary tension facilitates cutting con-
siderably while compression makes it difficult., This result is a consequence of the influence
of the configurational force - it i=s most substantial for internal cutting; howevex, it can
zlso be significant for surface cutting if an external force is applied tc the chip being
stripped off (for instance, by using a fluid or gas jet). The effect obtained can be usel
in designing the optimal structure ¢f z cutting instrument,

3. The problem cof cleavage with a dead zone under compression. Let a smooth

absolutely rigid semi-infinite thin wedge be along the negative half-axis z, and for y =0,
0« x< 1 ahead of it let there be a fine cavity, a dead zone filled with fragments of

ractured material ‘the plane problem, Fig.5'. At infinity the spate is compressed by the

4 I 7 ¥
stress g, = —¢ {¢> (). The action cf the dead zone on the edge of the cavity will be simuisted
by a constant pressure p>» (1 and a tangential frictiocn lcad T>U. Because of the symmetry

of the probiem we can limit ourselves tc the upper hali-plane y >4
We hence sbizirn the following boundary value problem cf the plane thecry of elasticlity
for the half-plane y > ik
=0, 7<CV. v=5h 14 =10 (3.4
y=0 U<r<<l g, =—p Ty =71
y=0. s>l v=0, 14 =0
22, 0y = —q. O =Ty =0
We use the Kclosov-Muskhelishvili representation of plane elasticity thecry
Oy 0,=2[0(z) =~ D()] (s=z-+1¥) (3.2)
Oy — Oy — 2014, =220 (z) +~ ¥ (3]
2uiuy =+ iy==wg(z) —zg (B)—$ (2}
¢ ()=0(0) ¥E=Y(0G
Here O (z) and ¥ (z) are analytic functicns of the complex variable z in the upper half-

plane, and u, v are displacements,
In this problem there are two singularities in addition to z=wo0: z= 0 and 2z = L
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Fig.5 Fig.6

The point z =1 is the tip of the separation crack; the function ® (z} is of order (z— I
there. 1In the neighbourhood of the other point the elastic body is tangent to the frontal
face of the cutter near the angular point when the dead zone is filled insufficiently with
fragmentary material, which results in infinite stresses near this point (of order z '3}, to
rough working of the body and further filling of the dead zone with fracture products. The
rough working process ceases when the pressure of the fragments in the dead zone becomes
sufficiently high in order to separate the cavity walls near the angles and to reduce the
stress concentration to a minimum near 2z =0. We consider the latter, stationary, stage of
the rough-working process by requiring that the desired function @ (2} should not have a
power-law singularity at the point 2z = 0.

By using the representaticn (3.2) and the theory of singular integral eguations, the
solution of the boundary value problem (3.1} in the above class of functions can be reduced
to the following form:

‘D<)-——q——p -—ln( -——i—-)+%(p—-q)]/—;_’-:,— (3.3)
() ¥ () =—pg- T (1 =)
(0 TE=0—1 as z—00)

By ueing (3.2 and (3.3) we find the shape of the cavity ahead of the cutter (for y=
+0, 0 <2< )

— [ —VET= ) + larctg )/ _’—Tr_} (3.4)

For z =0 the displacement v should be equal h

8ul 2 on—1 -
P=9=qm=p ~F %=1 " (5.3)
Since T = pu,. where u, is the ccefficient cf friction, we obtain the pressure p in the
staticnary dead zone from (3.5;:
[ Bul h 2 »—1 1
_ N e {3.6
P {_31\'/.4«1‘, C_{«j T 'L-‘-l) (3.8
Accerding te (2.3) and (3.5}
. dph - 217 ~
e =gy B =X
This corresponds to a wedge Cislocation of power 2k and force 21] at infinitv.
The stress 0, ir the dead zcne is determined fron the equilibriur eguaticn
d (o) dr = —pdv 8r — 1
Since we will have 0, =0 fcr r=1I. we hence ocbtain o0, = —p = 1(r — ) ' (2). There-
fore, the pressure on the frontal face cf the wedge is
— 0, =p-—alh=p{ -~ ywlh) (3.7}

Conseguently, the frontal resistance force T tc the wedge motion, in conformity with
{3.6) and (3.7), will egual

T =21+ n+ ) sy +o)(t =2 w2t} (3.8)

By using (3.2) and (3.3} we find the stress intensity factor K; =V 2nl{p — ¢) and the

length of the cavity in front of the cutter from the brittle fracture criterion and equations
{3.6)

_ 442

T a4 Vb= 4ac 4ac)’ (3.9)
- 8p 2 vt 2 K

(“ rraalliadey. 1/- Ke(t—%35rw), =22
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In particular, for ¢=0, v =", » =1 we will have [ = 32n"'u*h?K7} and it is evident
that for Ki <<3p)'% the required condition IS h is satisfied fairly well.

4. The problem of cleavage with a dead zone under temsion. 1In the case of
tension of the space across the wedge, the material breaks away from the side faces of the
wedge, and symmetric empty cavities (Fig.6) form along y =0 for < —a. 1In this case,
the stress intensity factor at infinity should be given as Kj = K;®> 0. This problem belongs
to the class N in which the Saint Venant principle is not satisfied /1/.

The following boundary value problem holds for the half-plane y > 0 with the other
assumptions as before:

y=0, < —a, o, =1,=0 (4.1)
y=0 —a<z<0, v="h 19=0
y=0, O<z<!, g,=—p, 1, =1

=0, z>1, v=0, 15=0
y=0, z—o0, 0,=0,=K=V2nz, 1, =0
From physical considerations in the conditions of the staticnary stage of the process, it
follows that the function @ (z) will behave as follows at the singular points of this boundary

value problem:
z——a, z—0, OE)=0(1); (4.2)

1=l O@E)=K/[2V2n(— 1)
Here K; is the stress intensity factor at the end of the dead zone (a crack with a filler).

By using (3.2) the solution of the boundary value problem (4.1) in the class of functions
(4.2) can be reduced to the following form

z@'(;)+‘-}‘(:)=—:l—ln<1 _i_) (4.3)
®(z)=-ﬂii-X(z)ST;é'§z;l—iE
IR

Z+4a T ! , 0, z<{—a
X(Z):“/Z zil f} f=__2—-"—lnli_—1—iT{—1;"2P,0<x<l
(L:y=0—0o<z<—a Plus y=00<r<!)
X —=1V7] as zo>o0 +i0
Here X*(z) denctes the value of X (z)on the upper edge of the slit.
Two conditions that give the behaviour of @ (z) as z—+ oo and z— I, equation (3.7}, the
equation T = pi;, and the condition

]

y=20, —Z—:—dx:h (4.4)
0
determine the unknown parameters of the problem, a,l,p. 1T, T.

By analysing formulas (3.4), (2.6} and (3.9}, we see that for real values of y; the
guantities p.l! and v (z)depend fairly weakly on 1 (the exception is the frontal resistance
force T). Consequently, for simplicity we neglect t when calculating a,l,p by assuming
t=10. Acccrding to (3.8), the quantity T as before egquals

T = 2ph (1 + wl'h) (4.5

where we find p
{

and | approximately.
By using .6

3.6) and (4.4 for t=0, we find

1
dv _ (x+1)p dt 4.6
y=0, 0zl r="gz" x+(r)57——-——+(,)(,_z) (4.6)

0

Moreover, according tc (4.4; we have for v =0
‘

P dz .
el m(:)=-—f——577_ (4.7
20 Yz p =)
1
~ e P e+ :I‘uS dz
b 0= [ =t JllEEtaE—n")
By using (4.6) and (4.7), conditions (4.2), (4.3) and (4.5) assist in obtaining the
following equations to find a,!, and p (all the radicals are positive) :
(4.8)

I —
{[rezi "= V0
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1 . K
§[z<z+a)<z—zn"- V= Pl +a)]" )
[ [
z(z4a) l— Vs dt = dnph
§[ =z ] d’§[:a+a)] T—z _PFD (4.10)

5. Cleavage with a yawning separation crack. When the fracture products are
removed from the crack cavity (or at the beginning of cleavage), the influence of the filler
can be neglected. In this case, p =1 =0 should be assumed in formulating the boundary value
problems (3.1) for compression, and (4.1) for tension, and the solution of the boundary value
problems should be sought in the class of functions having an integrable singularity as z—0.
We limit ourselves to the case of compression. The solution of the boundary value problem
will be

———getC 1 ] *(2) = — (5.1)
(D(Z)—2|/z—(;-—_l)+ 4 q' zd)(z)-{—‘}(z) 2q

(Vz (z—1)—>2z as z-+o00, and C is a real constant).
On the basis of (3.2) and (5.1), we find the shape of the crack cavity for y=+0,0<
z <<

v= "4';’ [(2C —ql)(%— arctg ]/ ;) ~q ]f;_(l——?)] .2)

Since v =~h for z =0, we obtain
2 —gl=—S (5.3)
According to (3.2) and (5.1) we have
K=V —gl) C—ql =K.V (5.4)

We find from (5.3) and (5.4)

S U P U | (5.5)
2ag? ( (nr 1) K5,
_ 4uh o1
'—Wf’yql (e>0)
In particular, for g¢g=20
_ pue _ aph
- akd, (1 4% T a0

The singularities z=0,z2=1[, and 2= oo are unique sources (for z = o) and sinks (for
z=0 and z=1) of elastic energy since the wedge is ideally smooth and the body is ideally
elastic,

We examine the invariant I'-integral (2.1) over the contour displayed in Fig.7. By
using (5.1) and (3.2) we can fingd

T=(1 — %) ETIK 2 + 2¢h (g > 0) (5.6)

Here T is the sum of [I'-residues for traversal around the
angles of the wedge (for 2z =0). The first term is the [I-
residue for by passing the point 2z=! and the second is the

I'-residue for bypassing the infinitely remote point.

On the basis of (5.6), a resistance force T acts on the
wedge as it moves. This is a simple and instructive example
of a configurational force! Let us note /5—10/ in which
different, more complex problems of cleavage were examined in
the classical formulation of the present section.

During cleavage of a body by a smooth rigid wedge with
a dead zone under compression conditions (Fig.5), the potentials
®(z) and ¥ (z) as well as the stresses in the non-stationary
rough-working process will have a power-law singularity at the wedge angles (for z = 0). In
this case, in addition to the frontal resistance force from the fragements, a configurational
resistance force component will also act on the wedge. By using the invariant T'-integral
it can be shown that this component equals

Fig.7
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T=(1—=v)E'K12 + 2h (g — p) + 21Au (5.7}
(Au=u (0,0 —u( 0)

During cleavage of a body by a smooth rigid wedge with a dead zone under tension conditions
(see Fig.6 and Sect.4), the configurational resistance force component has the form

T =T, — (§ — v E{K\=)® — 2hp -+ 21Au (5.8)
(Te = (1 — VHEIK 2, Au = u (0, 0) — u (I, 0)

In both cases the force T vanishes in the stationary stage.

As follows from published research, when calculating the resistance force in contact
problems concerning wedge or stamp motion /11-15/, the configurational component of this
force, generated when bypassing the singularities on the contact area, must be taken into
account. In particular, when slicing an elastic body with a very thin blade, whose ends
penetrate into the very tip of the forward-proceeding crack, the force of the resistance to
its motion will equal the critical force I, diminished by the configurational force from the
external tension field

T=P¢—' 1—E‘\’2 K

An analogous consequence holds with respect to the cutting work; the work of the external
forces expended in the cutter motion diminishes by the magnitude of the work of the configura-
tional force for K;>0.
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